
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-23, NO. 11, NOVEMRER 1975

Even- and Odd-Mode Waves for Nonsymmetrical

Coupled Lines in Nonhomogeneous Media

ROSS A. SPECIALE

Absfracf—A simple analysis of the eigenvectors, representing the

fundamental uncoupled wave modes of a pair of nonsymmetrical

coupled lines in nonhomogeneous medium, proves that these two

modes reduce, under a given condition, to an even mode with equaf

voltage magnitudes and an odd mode with equal current magnitudes

and opposite polarities. The condition, which may be cast in many

representative forms, is called “congruence condition” and may be

formulated simply, for a nonhomogeneous dielectric medium, by

saying that the ratio of the per-unit-length conductor-to-ground

capacitances must be the same in the empty arid in the filled struc-

ture. The essential interest of congruence lies in the drastic simpli-

fication it introduces in the expressions of the eigenvalues and of

the mode velocities and in the expressions of the mode atilttances

and impedances for the two coupled lines. Because of thk simpli-

fication, a straightforward matrix derivation maybe written to obtain

closed-form expressions of the entries of the 4 X 4 Y-, Z-, and S-

parameter matrices of the coupled-line 4-port. The simplicity of the

definition of the fundamental modes in congruent structures in-

troduces great conceptual clarity in the description of coupled-wave

propagation. Experimental evidence is presented which proves the

physical existence of the even-mode wave and of the redefined odd-

mode wave in suspended-substrate broadside-coupled striplines.

Practical structures of thk type are very closely congruent.

1. INTRODUCTION

T
HE propagation of sinusoidal waves cm parallel coupled

lines has been described in various ways by different

authors at cliff erent times.

Hktorically, the even- and odd-mode method was first

applied to the case of symmetrical lines in a homogeneous

medium [1]. The same method was later extended to the

case of symmetrical lines in a nonhomogeneous medium

[2] and the case of nonsymmetrical lines in a homogeneous

medium [3], [4]. In this latter case a rather confusing

alternative was given in the definition of the modes, de-

pending on whether the line voltages or the line currents

were considered [5]. Both these definitions appear valid

in the case of a homogeneous medium while it can be

shown that neither of the two applies to the general case

of nonsymmetrical lines in a nonhomogeneous medium [6].

Attempts have been made to treat this general case in

terms of so-called coupled modes [7], [81. However, by

far the most concise formulation of the problem was given

in terms of a matrix analysis of the fundamental or un-

coupled modes [9]–[11 ]. Thk method is very general

and applies to the case of multiconductor transmission
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lines with any number of conductors all mutually coupled.

It is the purpose of this paper to show thats very interest-

ing and simple condition exists in the case of two non-

symmetrical parallel coupled lines in a nonhomogeneous

medium which reduces the fundamental modles to a voltage

even mode and a current odd mode. Because of this re-

duction, great simplification is introduced in the expres-

sions of the mode velocities and of the mocl e admittances

and impedances for the two lines.

Thk simplification makes the derivation of the 4 X 4 Y-,

Z-, and S-matrices feasible in closed form. Also the con-

dition, which we call “congruence,” introduces great con-

ceptual clarity in the normal mode description of wave

propagation.

Experimental confirmation has been obtained of the

physical existence of the reduced fundamental modes.

This work is described in the last section of this paper.

II. THE FUNDAMENTAL MODES OF

GENERALIZED COUPLED L] NES

Multiconductor coupled transmission lines, including

those with a nonhomogeneous medium, are characterized

by their symmetric inductance matrix \ L I and their sym-

metric capacitance matrix ] C I . The ordler n of these

matrices is given by the number of conductors in the

system, and their entries L,j,C,j are the per-unit-length

self- or mutual inductances and capacitances of the

various conductors.

Sinusoidal waves propagating on the lines may be de-

scribed by a voltage vector I V I and a current vector I 1 I

both of order n. These vectors maybe expressed as linear

combinations of n voltage eigenvectors ~V I~ and, re-

spectively, n current eigenvectors 11 li defined by the

two simultaneous matrix equations [11] (i = 1,2””0 ,n)

IV], =?A. IL] .11], (1)

II], =?J,. ICI. ]VI, (2)

where the mode velocity vi and the voltage and current

eigenvectors I t’ Ii and I 1 Ii characterize a fundamental

or uncoupled mode of propagation.
By eliminating either the eigenvector I 1 [i from (1)

or the eigenvector I V Ii from (2), two eigenvalue equa-

tions for I V Ii and, respectively, 1~ Ii, are obtained
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and for the eigenvalues l/vi2 by solving the characteristic

ICLI. 11[, =:]ZI, (4) equation of I LC I or I CL 1’ [12]
.

where lLCl=l L1. lClandl CL]= lC1. lL /arethe
()

:2–(A+D) ++(AD– BC)=0 (15)

direct and inverse matrix products of matrices I L I and
vi

ICI, we then obtain the two values
In the case of a pair of Iossless nonsymmetrical parallel

coupled lines, including the case of a nonhomogeneous 1 A+D—= * >[(A – D)2 “+ 4BC]1/2 (15’)
medium, these matrices may be written as V i2 2

LI L. L. M

IL]= =
which define the velocities of the fundamental modes. It

(5) is easy to express the mode impedances and admittances
L. L, M Lb as functions of the per-unit-length inductances and ca-

and their products assume the form

AB

lLCI= (7)

CD

A C’

lCLl=l_LCl~= (8)

BD

where

A = L,C, – L.C. (9)

B = –LJL + L.C, (lo)

C = L.C, – L,C. (11)

D = LZCZ – LmCm. (12)

By substituting the products (7) and (8) in the eigenvalue

equations (3) and (4) and expressing the eigenvectors

I V Ii and I 11; in normalized form, we obtain the matrix

equations

AB 1 1
. “V=$ v, ; = 1,2 (3’)

CD w a;

AC 1 1
. .1=: I, i = 1,2 (4’)

BD A ‘a Pi

which may be solved for the voltage and current mode

numbers w and ~;

A–D C
ai2 + —

B
~i——=o

B
(13)

pacitances, of the mode v~locities and of the mode numbers

a; and ~i. To do this we just rewrite (1) and (2) by sub-

stituting (5) and (6) and expressing the eigenvectors in

normalized form (i = 1,2)

1 LI L% 1

V=v{ . I (1’) .
a!i L. L2 &

1 c, – cm 1
I=vi . v (2’)

D* – cm c, m

or explicitly (i = 1,2)

V = v,(L, + /?iLJI (16)

a;V = v~(L~ + /?iL2)I (17)

I = V,(C,– Cu,cm)v (18)

&I = V,( –cm + (kc,) v. (19)

As a consequence, the mode impedances and admittances

of the two lines a and b for mode i are (i = 1,2)

Z,f = ; = v,(L, + @,LJ (16’)

()zodb=~v=v{ Lz+: (17’)
a ,

YO;U= ~ = Vi(Cl – a;C~) (18’)

Yo,b = !$ =
‘(cZ-: )-o ‘19’)

Thus we obtain four impedances and four admittances,

A –D
one for each mode and each line. Notice that

2B
+ + [(A – D) 2 + 4BC]1/2 (13’) YO;” Zo;b a~ C

E“—=Z=E’ZO;”
i = 1,2.

t%’ +
A–D B
~Di–~=o (14) It is clear that in the general case the mode numbers CZi

and f?<, the mode velocities Vi, and the mode impedances

A–D
and admittances are all quite complex irrational functions

2C
: [(A – D)2 + 4BC]’/’

* 2C
(14’)

~The coefficients of this equation are – Tr j LO I and Det ] LC /.
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of the per-unit-length inductances L., Lb, M, and capaci-

tanc(?sca,cb,cab.However, w,~,,andv,c anbep rovedto

be always real. As a consequence, the mode impedances

and admittances will be real too, for lossless lines.

The mode numbers w and L3i may have either positive

or negative sign and may have the same or opposite signs.

The mode velocities V; obtained from (15’) always come

in pairs of opposite roots, relating to the two directions of

possible mode propagation on the two coupled lines.

III. THE CONGRUENCE CONDITION AND

ITS CONSEQUENCES

It is easy to see that great simplification is introduced

in the expressions of the mode numbers (13’), (14’), the

eigenvalues (15’), and mode impedances and admittances

(16’) -(19’) if, in (7) and (8)

A+ B=, C+D (20)

or

A–D=C– B. (20’)

In this case, which we call congruence, the mode numbers

a; and ~; reduce to

C–B

“=- 2B
& ~ [(C – B)2 + 4BC]112

= ;[(1 – C/B) + (1 + C/B)]

I

1 for i = 1 (+ sign)
——

– C/B for i = 2 (– sign) (13”)

C–B
& ~ [(C – B)z + 4BC]1’2

“=- 2C

= ~[B/C– 1) =t (B/C +l)l

-[

B/C for i = 1 (+ sign)
—

–1 for i=2(– sign). (14”)

In conclusion, in this case the matrices of the normalized

voltage and current eigenvectors reduce to

11

Mv = (21)

1 – C/B

11

M1 = (22)

B/C – 1 “

From the first column of MV we see that the mode i = 1

is a voltage even mode h~ving equal voltages on the two

lines. From the second column of Mr we see that the mode
i = 2 is a current odd mode havingcurrents of equal mag-

nitude and opposite sign on the two lines.

It is then justified to call these modes the even mode

and the redefined odd mode of the congruent coupled

lines. A physical interpretation of the condition (20) may

be obtained by substituting the expressions (9)-(12) of
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A, B, C, and D

LICI – LmC. – L~Cm + L.C2

= L.C1 – L2C% + L2Cz – L.C. (23)

LI(CI – CrrJ + L.(C2 – Cm)

= LZ(CZ – CJ + L~(C, -- Cm,) (23’)

cl–cm= L, – Lm
(23”)

c, – cm L1 – L.

c. Lb–k?

‘z= L.–M”
(23’”)

We see from (23’”) that a pair of coupled lines may, while

being congruent, be nonsymmetrical (Cm # C,, La # Lb)

and the medium may be nonhomogeneou~~ causing the

mode velocities VI = V. for the even mode a,ld V2 = VOfor

the redefined odd mode to be different.

In particular, if the medium is just a nonhomogeneous

dielectric with p, = 1, then the parameters La, Lb, and M

will have the same values in the given structure and in the

so-called empty structure, which is obtained by removing

the dielectric while leaving in place the conductors.

In thk connection it is interesting to ncltice that the

congruence condition (20) is intrinsically satisfied in the

empty structure where

V1 = VZ = c == velocity of light in air (or vacuum).

Indeed, in this case the product matrices I LC I and / CL I

are diagonal matrices with

B=C=O (24)

and

A = D = l/c2. (25)

This means that the condition (23’”), equivalent to (20),

will always be satisfied by the per-unit-length line-to-
ground capacitances C.A,Cb.4 of the empty structure and

by its per-unit-length inductance parameters La, Lb,

and M.

In conclusion, if a pair of nonsymmetrical coupled lines

with nonhomogeneous dielectric is congruent and we call

CaZ),CbD its per-unit-length line-to-ground capacitances

(with the dielectric in place), we have

CaD_CaA_Lb–M

m CbA La–M”
(26)

So the congruence condition may be expres~ed by saying

that the introduction of the nonhomogeneous dielectric

in the empty structure must not affect the value of the

ratio of the per-unit-length line-to-ground capacitances.
The effect of the nonhomogeneous dielectric may be

described by introducing the three equivalent dielectric

constants e., Eb,and cm defined by

C.D = 6.c.A (27)

CbD = ‘%ebh (28)



900 IEEE TRANSACTIONS ON MICROWAVE TBEORY AND Techniques, NOvEMBER 1975

cabD = G#abd.

Then congruence is obtained if E. = Eb.

(29) ~ ~+D
— = — + *[(C + B)’]’/’ = +[(A + D) * (c + B)]
~i2 2

It can be proved that for a nonhomogeneous medium

having at the same time dielectric and magnetic proper-

I

*[(A+ B)+(C+D)]=.A+B=C+D

ties, the latter being described by the three equivalent
for i=l

relative permeatillities K., pb, and IJm, congruence is ob- =

tained if
+[(A– C)+(D-B)]=A– C=D– B

for i = 2. (15”)

cabA cabA

IJ.E. — lJb~b= (1% — k) E. — — — (30) As a consequence, very simple expressions of the mode
CbA ‘pm – ‘b)’b cd “

velocities may be written as functions of the line param-

For a pair of congruent, nonsymmetrical coupled lines eters

with nonhomogeneous medium, the only nonunity mode

numbers are
1

‘1 = “ = (A +113) ’/2 = (c+ D)’12
c“

a2=ao =-—
B

(31)
1——

[L(CI – Cm) + L~(C2 – C.) _J12
and

(32)
1

.
[L2(C’2 –. cm) + Lm(C~ – Cm) ]’12

(34)

Under conditions of congruence the basic expression 1 1

C LtnCI – L2C.

i = L.C2 – LIC.

‘2= 2’0‘= (A – c) 1/2 = (D – B) ‘/’
(33)

1
also becomes greatly simplified and acquires a relevant

physical meaning. This may be seen by rewriting (23’) as

.
[(L – G) CI + (L2 – LJ Cm]112

LI(C, – cm) – -G?(C2 – Cm) = L.(C, – Cm) 1.

1 [(L2 –
(35)

Lm) C2 + (L1 – LJ c~]liz ‘
– Lrrz(C, – CJ . (23’’”)

Finally, from the expressions (16’)–( 19’) we obtain, by
By multiplying both sides by Cm and adding L~CICz, this substituting the appropriate values of the mode numbers
may be rearranged in the form w and pi, the following expressions of the even- and odd-

(L~C, – L2C~) (C, – Cm) = (L~C2 – L,Cm) (C, – Cm).
mode impedances and admittances:

(2311111)

‘Oea=ve@+:Lm)
(36)

So that in conclusion

C LrnCl – L2C7n _cl–cm c.
(33’) ‘0’=vek2+%Lm)

(37]—. .—
B LmCz – LICm – c2 – Cm Cb “

We see then that in the case of congruent limes the even-
ZOO”= VO(L1 – LJ (38)

mode currents are simply in the same mutual ratio as the ZO) = v,j(Lz – L~) (39)

per-unit-length lime-to-ground capacitances. Also the odd- Y“e” = v. (cl – cm) = WC.
mode voltage magnitudes are in the” reciprocal ratio of

(40)

these capacitances Y“? = V.(C2 – cm) = Vecb (41)

(31’)

(32’) ‘03=vo(c2+:cJ

(42)

(43)

The congruence condition (20) also introduces great sim- By substituting Cl = Cm + Cd, C.2 = Cb + Cti, and Cm =

plification in the expressions of the eigenvalues as given C.b in (42) and (43) and taking the reciprocals, the odd-

by (15’). Indeed these expressions reduce to mode impedances may be cast in a more familiar form
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[5, p. 193] V4 = v2e + V40. (.51)

Zoo@=
Cb

(38’)
In (44)–(47) the even-mode current components are

V. (f&C5 + CaC~ + CbCab) then mutually related by the simple proportion

c.
11. 12. C. ~a

Z(lob = (39’)
.— .—=

% 14. cb “
(52)

Vo(C.cb + CaC~ + (&cd) ‘

It is clear from all the expressions found for the congruent

‘case that the ratio C./C6 of the per-unit-length line-to-

ground capacitances plays a very important role here.

Historically [6], the symbol R, was used to specify this

ratio as follows:

Among these ratios only R3 and Rb actually play roles of

interest in the relevant expressions of the congruent

coupled lines.

The even and odd modes of congruent lines have been

proven to satisfy the coupled-mode equations [13].

IV. THE DERIVATION OF THE Y-, Z-,

AND S-MATRICES

In the coupled-line 4-port of Fig. 1 where line a con-

nects ports 1 and 2 and line b connects ports 3 and 4, we

consider the contiguous ports 1 and 3 input ports, and the

contiguous ports 2 and 4 output ports.

In, the context of the new mode definition we can write

the four port currents 11, 12, 13, and Ih and the four port

voltages VI, Va, Va, and V.4 as follows:

Similarly, (48) – (51) the odd-mode voltage components

are mutually related by the proportion

vlo=T720=_c5=_A
V30 V40 z R3”

(53)

As a consequence the eight expressions (44)-(51) can be

rewritten as

II = 11. + 110 (44’)

12 = 12e + 120 (45’)

13=$ –110

14=$–120

(46’)

(47’)

V1 = Vle + Vlo (48’)

v’ = v2e + V20 (49’) ~

V3 = Vle – R3V10 (50’)

v4 = vze – R3v20. (51’)

In these equations the even-mode current and voltage

components at the input and output ports are mutually

related by the two 2-port even-mode Y-matrices I YE” I

12 = 12e+ 120 (45) and ] YEb 1, which are different, because of line inequality

13 = 13e – 110 (46)

14 = 14e – Izo (47)

VI = VI. + Vlo (48)

V2 = V26 + V20 (49)

V3 = VI. + V30 (50)

Fig. 1. Typical nonsymmetrical asynchronous coupled-line Aport.
Nonhomogeneous dielectric propagation medium is sssumed. The
cross-section geometry of the test fixture for wave-mode propaga-
tion experiments is shown in the insert.

11.
V1.

E

=lY~bl. .

12.
v2e

F3

(55)

Similarly, the odd-mode voltage and current components

at the input and output ports are mutually related by the

two different 2-port odd-mode Z-matrices I ZO” I and

I Zob I

Vlo 110

=lzoa/. (56)

V20 120
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v,–v3=_v30“Vlo=
1 +.R~ R,

(65)

(.57)

RSV2+ V4
“V,e = = v4e

1+R3
(66)I -I,,

However, by performing an operation of matrix inversion,

which implies a network-parameter transformation from

Z to Y, these relations can be rewritten in the form
V!2– V4 V40

“V20=
1+ R3=– R3’

(67)

Il. VI.

= I Zoap . (58)

I,. v,.

Therefore, by substituting these four voltage components

in the right-hand vectors of (54), (55), (58), and (59),

the current components 11~, Il., Iz., and IzO can be com-

puted.

These current components can then be substituted in

(44’) -(47’) yielding the expressions of the four port cur-

rents II, 12, 1s, and IL as linear combinations of the four

port voltages VI, V.Z, V,, and V,.

The 16 coeiliciients of these four expressions then repre-

sent the 16 entries of the 4 X 4 Y-matrix of the nonsym-

metrical and asynchronous coupled-line 4-port. They

respect the mutual identities dictated by end-to-end sym-

metry and by reciprocity y between any two distinct ports,

regardless of the specific values of the even-mode and odd-

mode wave velocities v. and vO.

Six different entries need to be given to fully specify

the 4 X 4 Y-matrix, akd these are

– Il. –R3V,.

= I Zo’ 1-1. . (59)

\-I,ol I -R,V,.I

In (54) and (55) the even-mode 2-port Y-matrices for

lines a and b are given by

I 7 z = a,b. (60)

j (YO.aRz
Yll=Y22=–.— —

1 + R3 tan e.
+1

)ZOO”tan 80
(68)

At the same time, the two odd-mode 2-port Z-matrices

of (58) and (59) are given by “(Y33=Y44=– ;&8 z+
R,

)ZoObtan 00
(69)

e

zoo” . zoo’

‘2 tan 00 ‘J sin 00 “(Yo6aR8
Y12 = Y21 = -J-

1
—+

1 +- J?3 sin 0. )ZOO”sin 00
(70)

120’1=

In the given expressions (60) and (61) 0. and 00 are the

1 z = a,b. (61)
/“

(Y03
y34 . y43 . --L._ R3

—+
1 + Rs sine. )zoob sin o.

(71)zoo’ . zoo’
–j— —

sin 00 ‘3 tan 00

~ (Yoe”
YI, =Y31=Y2, =Y42=– — —

1 )1 + R3 tan 06 – Zoo” tan 00line electrical lengths for, respectively, the even and odd

mode as defined by

ee=pel=~l=~l (62)
6 ve

jR3

(

Yo.b 1
._— — _

1 + R, tan O. )ZoObtan 00

(72)

eo=pol=; l=~l
0 VO

(63)

while the even-mode admittances YOea,YO.b and the odd-

mode impedances ZO~a,ZO~bare defined by (40), (41),

(38’), and (39’).

By solving (48’) and (50’) for V1. and V1O, then, simi-
larly, (49’) and (51’) for Vz. and Vz., we have

jR,

(

YlJ6b 1.—
l+R~ SiIl& )“ — .%b sh % “

(73)

In a similar way, (54) and (55) could be rewritten

through matrix inversion as
V1. = R3V1+ V3 = vo~

1+R3
(64)



SPECIALE: NONSyMMETfiICAL cOupLED LINES

VI.

= ] yEa I-1 .

V2,

VI.

= I yEb1-1.

v2e

II.

(74)

12,

Il.

E3

I.ze

F3

(75)

and directly combined with (56) and (57) to obtain the

expression of the 4 X 4 Z-matrix of the nonsymmetrical

and asynchronous coupled-line 4-port. The six different

entries of the 2-matrix are given by

211= 222= – .i

(

R,, ● Zooa

1 + Ra Yo.a tim 0, –)tan 00
(76)

~ ( 1

)

R3Zo~
z3a=z44=— —

1 + R3 Yo$ tan 0.
+—

tan 90
(77)

j ( R3 + Zooa
‘Z12= 221= – —

1 + R, YoeaShl 66 –)
(78)

sin e.

j ( 1

)

R,Zoob
z34=z43 =-— +— (79)

1 + R3 Yo.b sin 0. sin 00

( .%”
Z13 = 231 = 224 = z42= – &, Yoea;an ~e_—

)tan e.

j ( i Zoob—__— )_—
1 + R3 YoGbtan 0. tan 00

(80)

jR3

(

1 zoo”

)
214=241=22,=232=–— ‘–—

1 + R, Yoeasin 0. sin e.

j ( 1 Zoob—__—
)

_—
1 + R3 YC> sin& sin 00 “

(81)

It is very easy to verify that the expressions (68)-(73)

given for the entries of the Y-matrix and the expressions

(76)-(81) given for the entries of the Z-matrix reduce

to the corresponding expressions given for a homogeneous

medium [3], [4] for 0. = do = 0. Also they will reduce
to the corresponding expressions of symmetrical lines for

R, = 1 [1], [2].

Further the expressions (76)–(81) defining the 4 X 4

Z-matrix have been successfully tested against the values

computed by numerically inverting the Y-matrix as de-
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fined by the expressions (68)–(73). This proves that the

two matrices represent the same 4-port.

Finally, the closed-form expressions of the S-parameters

of the nonsymmetrical, asynchronous 4-port can be de-

rived by directly relating the four port vollages and the

four port currents to the internal even- al~d odd-mode

waves propagating along the two lines.

We assume here the wave propagation upon a pair of

nons@metrical and asynchronous coupled lines a and b

to be represented by a total of four internal waves, each

wave having voltage and current components cm either

line.

Referring to line a these waves are:

1) The even-mode incident (forward) wave V;~. which

is assumed to propagate from port 1 toward port 2;

2) The odd-mode incident (forward) wave Vi~~ also

propagating from port 1 to port 2;

3) The even-mode reflected (backward) wave Vrae

which is assumed to propagate from port 2 toward port 1;

4) The odd-mode reflected (backward) wave V,~~ also

propagating from port 2 to port 1 on line a.

The corresponding voltage waves on Iin e b are Vib.,

Vibo, Vrbq and V,b.. The incident (forward) waves are as-

sumed to propagate from port 3 to port 4 and the reflected

waves (backward waves) from port 4 to port 3.

The electrical length of the lines is assumed to be the

same and expressed by 0. for the even-mode waves and by

130for the odd-mode waves.

By assuming port 2 at the end of line a as the origin

of a reference coordinate system with the positive semiaxis

pointing toward port 1 and also as the reference point for

the phases of all considered waves we can write the four

pOrt VOltageS VI, v2)~3, V4 as 10Cal additions Of fOUr VOltage-

wave terms

VI = Via@exp ( jO.) + V;.. exp ( jOO) + V,.(:

● exp ( –.i13.) + V~~~exp ( –jO.) (82)

V2= Viae+ V;ao+ vm. + v... (83)

V3 = V~@.exp ( jO.) –R3V~a0 exp ( .iOo) + V,~.

● exp ( —O”O@)– R3V,~0 exp ( –@~) (84)

V4 = vi.. —R3Vi@0 + Vr.6 — R3VVao. (85)

Let us now consider the current waves amociated with

the already introduced voltage waves.

The even-mode currents can be expressed by multi-

plying the even-mode voltages by the appropriate even-

mode line admittances YO.” or YO.b.Similarly, the odd-mode

currents can be expressed by dividing the odd-mode volt-

ages by the appropriate odd-mode line impedance ZO.a
or 2005.

The four port currents 11,1Z,1S,14may be expressed as

local additions of four current-wave terms. But by ex-

pressing the wave currents in terms of wave voltages we

obtati
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v
“ exp ( –jO.) – ~~ exp ( –.jOO) (86)

(87)

v
. exp ( —.N.) + R3 H exp ( –jO.) (88)

v v
IJ = – YO;bVi.e + RS @ + y03V.ae – R~ ‘0 .

Zoj
(89)

Caution must be exercised in the choice of the 16 signs

of the various current-wave terms. The rule, which follows

from current-sign conventions, is that incident-wave cur-

rents are positive at ports 1 and 3, negative at ports 2

and 4. Conversely, reflected-wave currents are negative

at ports 1 and 3 and positive at ports 2 and 4.

This rule is true if the corresponding wave voltage is

positive, which is not the case for the odd-mode v&ages

of line b. Here we have sign reversal because the corre-

sponding voltage is negative.

The two sets of equations (82)-(85) and (86)-(89)

may both be solved for the four voltage waves ‘V.i~e, V~~O,

V,=., and V,~~ so that each wave is expressed once as a

function of the port voltages imd once as a function of the

port currents. At thk point boundary conditions can be

set specifying the values of the external impedances at

the four ports and the position of one voltage source. For

instance, by assuming a generator with EMF, El and in-

ternal impedance ZO to be connected at port 1 and loads

of impedance ZO to be connected at the remaining ports

2, 3, and 4, we have

1, = + (El – v,)

1,.-~
Zll

&-~3
Zo

14=–;.

(90)

(91)

(92)

(93)

By substituting these expressions of the port currents

in the expressions of the wave voltages as functions of

the same currents as obtained from (86) –(89), new ex-

pressions of these wave voltages are obtained which re-

sult again in being functions of the four port voltages.

By equating this new set of four expressions to the corre-

sponding soluticns obtained from the set (82) – (85), the

wave voltages cam be eliminated and the four port voltages

V1, Vz, V3, and V1 can be directly expressed as functions

of the system parameters and of the EMF, El. These

operations actuadly provide the voltage transfer functions

relating the four port voltages to the source EMF, El.

These four transfer functions are directly related to the

entries S11, LSL, SW and SM of the first row of 4 X 4 S-

parameter matrix, which are all different from one another.

By moving the generator from port 1 to port 3 the four

entries of the third row of the 4 X 4 S matrix can be ob-

tained. These will provide the two remaining entries SH

and SW necessary to completely specify the 4 X 4 S-matrix

and in addition confirm the eqUality of th to 818 and 832

to SM, as required by reciprocity. It is of course possible

to move the generator to ports 2 and 4 but this would

yield the entries of the second and, respectively, the

fourth row of the S-parameter matrix which, because of

the peculiar matrix structure, would provide no addi-

tional new information.

The six different entries defining the 4 X 4 S-parameter

matrix obtained through the outlined procedure are given

by

NIR + jNII
Sl, = S22=

DR + jDr

N2R + jN21
S83= S44=

DR + jDr

N3R + jNa
Su = S21= DR● jDr

N4R + jN4r
S34= S43= DR~ iDr

(94)

(95)

(96)

(97)

N5R + jN5r
Sn = 831= 824= 842=

DR+ jDr
(98)

N6R + jN6r
S14= S41= S.n= S82=

DR + jDr
(99)

where

DR = 2[(1 – Rg)2 – (a + 2R3 + 3R3’) COSdeCOS00]

+[(l+R’)2@3z+k2)+%

+ (1 + ~h2)2~oeazooa
R3 1sin 0. sin 00 (loo)

{[ 1Dr = – 2(1 + R3) (1 + R32)z0.= + ~ sino.c0s8e

[ 1+ (1 + R32);:” + Z:a Sin&CoS190
}

(101)
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~,R = 2(1 – /2,2)(1 – COS&COS 60)

+[’1+R3)2(R3:-+5)

1 – R34 1— ““sin 0. sin 00
+ R, ‘0’ ’00

‘“= -2(’+ R3)[(zo0”-i)sin’ocOs’.

-(~oea-iJR3sine’OsoJ
NZR = – 2(1 – R3’)(1 – COSO.COSOO)

+[(1+R3)2(R33-%$)

1 – R34
— — ycl.”zoo”

RS 1sin 0. sin 00

(102)

(103)

(104)

N,r = – 2(1 +R3)
[( )

R32z00”– ~ sin 00 cos 0.

+~-&)sin&cos*O] (105)

N3R ~ – 4(1 + R3) (COSOe+ R3 cos 190) (106)

’31 = -2(1 +RJ[E+:)sh0e

( )1+ R32Z0.” -1- -& ‘~% (107)

NIR = –4(1 + R3) (R3 cos O. + cos 6.) (108)

‘u= -2(’+ R3)[(:a+i)R3sin’e

+(’00”++)’4 (109)

NSR = 2(1 – R3)2(1 – COSO.COS6’0)

[

2R, 1—2 ( 1 + RS2)VO.a~O.O— z . sin 0. sin 0.

(110)

[( )
Nsr = 2(1 + R,) Rwo~” – ~ sin do cos e.

-(%y’’a)sin’w~ol(111)

NbR = 2(1 + R3)Z(COS6. – COS(?.) (112)

905

‘6’‘2(1+R’wi+yoa)sin’@
-k3z00a+$)sin’01(113)

where ye.” and zoo”are the normalized parameters of line a.

The S-parameter matrix as defined by the previously

given closed-form expressions, has been tested against the

results of numerical computations of the same parameters

based on the general formula

IS I={ IUI+IYII-’ (I UI– I!JII (114)

where I U I represents the 4 X 4 identity matrix and ] ~ I

is the normalized 4 X 4 Y-matrix obtained from the ex-

pressions (68)–(73) by multiplying all the e~tries by the

external impedance 20 [14], Recently, more general ex-

pressions of the six entries of the 4 X 4 S-parameter

matrix have also been derived for a situation” in which

the value of the termination 20= at either cnd of line a

(ports 1 and 2) is different than the value of the termina-

tion 2$ at either end of line b (ports 3 and 4) [15]. These

expressions led to the design of asynchronous codirect onal

couplers with large impedance ratios between the two

lines and almost total coupling, characterized by abso-

lutely linear phase rotation [16],

Also alternative closed-form expressions of the iS-

parameters have been obtained by formally carrying out

the operations of matrix inversion and ~llultiplication

specified by (114) [17].’ These alternative expressions

have also been tested numerically for correctness.

V. EXPERIMENTAL RESULTS

Two basic experiments were performed in our labora-

tory by using coupled-line test fixtures, such as the one

in Fig. 2, having parallel ground planes with 0.5-in spacing

and suspended ceramic substrate orthogonal to the ground

planes. The lines are broadside-coupled gold runs of un-

equal width, and the cross-section geometry i~~that shown

in Fig. 1. A 3-in and a 16-in structure were used.

In the first experiment [Fig. 3(a) and (b)] a voltage

even mode was launched down the lines by connecting

both input ports 1 and 3 (Fig. 1) in parallel. A 25-ps-rise-

time tunnel-diode step generator was used and 12-GHz

samplers were connected at the output ports 2 and 4. The

input even-mode step waveform was found to propagate

along both coupled lines at the same velocity, slightly

lower than the velocity of light in vacuum regardless of

line asymmetry (0.065-in and 0.0135-in strip widths were

used). The output step signals on the 50-fl output lines

appear unequal in magnitude because of the unequal re-
flections at the two output transitions

~ Credit is due to Dr. N. R. Franzen, of our department, for de-
veloping a method of formal matrix inversion a plicable to 4 X 4

rblock matrices having the symmetry pattern o the given Y-, Z-,
and S-matrices.
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Fig. 2. Test fixture foreven- andodd-mode wave propagation ex-
perimeuts upon nonsymmetrical asynchronous parallel coupled
linM.eA 4-port launcher arrangement is shown on the 3-in-long
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Fig. 3. Even-mode step-wave propagation experiment. The two
equal 25-ps-rise-time input steps are seen to reappear synchro-
nously at the low-impedance and the high-impedance output ports
2 and 4. (a) Results from 3-in-long fixture. (b) Results from
16-in-long fixture. Ports 1 and 3 of lines b ~d b are shorted to one
another. The dashed lines are theoretical step responses computed
from frequency-domain S-parameter data through FFT.

In a second experiment [Fig. 4(a) and (b)], apush–

pull 25-ps-rise-time tunnel-diode step generator was con-

netted to the input lines and adjusted for step synchronism

as an’ attempt tit launching an odd mode down the lines.

Obtaining a pure odd mode is difficult because of the un-

equal reflections at the two input transitions. Howwver,

it ‘was considered imelevant because the different velocities

of the two modes separate them in time at the output!

The results obtaixied proved that the incident, push–pull

step excitation applied at the liie inputs breaks down along

the line length into two rionsynchronous components con-

sisting of a faster voltage even mode having the polarity

of the signal at the wide-line input, and a much siower

current odd ‘mode, having the largest voltage across the

narrow line.

The values of the line parameters YO.”, YO$, 200”,and

ZO~ may” be computed from step-amplitude values ob-

tained in the two experiments and have’ been used, with

the experimental values of the even-mode and odd-mode

velocities to compute the theoretical transient responses

shown ah dashed lines in Figs. 3 and 4. This computation

was performed by convertkg frequency-domain S-param-
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Fig. 4. Push–pull step-excitation experiment. The 25-ps-rise-time
input steps having opposite polarity are seen to break down to a
faster even-m~de component having the polarity of the step at
the input of the low-impedance line [positive step on the low-
~pedance line in Fig. 4(a) and (b)] and two slower odd-mode
components having unequal voltage magnitudes, the larger volt-
age appearing across thehigher impedance line. (a) Results from
3-in-long iixture. (b) Results from 16-in-long fixture.

Fig. 5. A nonsymmetrical pair of parallel-coupled lines: C= and
C6 are line-to-ground capacitances per unit length, Cti is the
line-to-line capacitance per unit length which must be considered,
for the odd mode, as the series combination of the two unequal
capacitances c~l and C~z (CabI/Ca = C@/@.

eter values to the time domain through a fast Fourier

transform (FF’1”).

VI. CONCLUSION

In a large class of nonsymmetrical coupled lines with

nonhomogeneous propagation medium, a voltage even

mode and a current odd mode are found to be the funda-

mental uncoupled modes of the structure.

The two modes are characterized by ha,ving, respec-

tively, wave voltages of equal magnitude arid phase, and

wave currents of equal magnitude and opposite phase.

This causes the even-mode currents on the two lines

to be in the mutual ratio of the per-unit-length line-to-

ground capacitances and the odd-mode voltages to be in

the inverse ratio of these capacitances.

The condition for the existence of these simple modes,

called congruence condition, is Cm/Cb = (Lb — M)/

(L. – M).

This condition is satisfied by nonsymmel;rical lines in

a ‘homogeneous lmedium and implies, for a r onhomogene-

ous dielectric, that the ratio of the two 1ine-to-ground

capacitances’ C. and cb is the same in the filled and in the

empty structure (see Fig. 5).

The existence of these new modes has been proved

experimentally in suspended-substrate broadside-coupled

striplines.
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Components

Survey of Microwave Ferrite Control

and Mater_iak fc)r 1968-1974

LAWRENCE R. WHICKER, SENIOR MEMBER, IEEE, AND DONALDI M. BOLLE, SENIOR MEMBER, IEEE

(Editors)

Abstract—An annotated literature survey covering major de-

velopment in the area of microwave ferrite control components and

material primarily for the 196S-1974 period is presented.

I-1, INTRODUCTION

A S PART of the responsibility for monitoring the field

of microwave ferrite control components and ma-

terials the IEEE Microwave Theory and Techniques

Society Ferrite Technical Committee (MTT-13) and the

IEEE Magnetics Society’s Technical Committee on

High Frequency Materials have combined their resources

to conduct a survey of the most significant papers that
have appeared since the publication of the book by Lax

and Button [1-1-1] in 1962, the 1968 survey article by

Soohoo [1-1-2], and the 1969 book by Fay and Von Aulock

[1-1-3]. The time for a new survey appears particularly

appropriate in that this field has seen major advances in

ferrite components and in materials. The field has matured

Manuscript received March 25, 1975; revised July 2, 1975.
L. R. Whicker is with the Microwave Techniques Branch, Elec-

tronics Technology Division, Naval Research Laboratory, Wash-
ington, D. C. 20375.

D. M. Belle is with the Department of Engineering, Brown
University, Providence, R. I. 02912.

and has reached a high level of sophistication in component

optimization an{d in materials technology.

The emphasis in this article is on the ferromagnetic

control component and systems utilization of such com-

ponents, although material aspects are considered also. A

companion survey paper [I-1A] has been published in the

May issue of tlhe IEEE TRANSACTIONS ON MAGNETICS.

The article published therein has greater emphasis on

materials and includes a section by C. E. Patton on the

loss mechanisms in ferromagnetic materials. A further

companion paper by Knerr [1-1-5] covers the English

language literature on circulators and isolators.
~he survey was organized and pursued at joint meetings

of the two technical committees with members of these

committees accepting responsibility y for the major topics.

The section on nonlinear ferrite devices and filters was

prepared by J. L. Allen, the sections on phase shifters

and integrated circuits were contributed by L. R. Whicker,

C. R. Boyd, Jr.,, R. Tang, and R. G. Roberts. P. de Santis

and D. M. Belle collaborated on the section on the edge-

guided mode, and R. G. West and L. K. Wilson prepared

the section on characterization and material properties

of ferrites. The reviews of the foreign literatures were

conducted by J. Nlcolas and A. Priou (Materiaks/Devices,


