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Even- and Odd-Mode Waves for Nonsymmetrical
Coupled Lines in Nonhomogeneous Media

ROSS A. SPECIALE

Abstract—A simple analysis of the eigenvectors, representing the
fundamental uncoupled wave modes of a pair of nonsymmetrical
coupled lines in nonhomogeneous medium, proves that these two
modes reduce, under a given condition, to an even mode with equal
voltage magnitudes and an odd mode with equal current magnitudes
and opposite polarities. The condition, which may be cast in many
representative forms, is called “congruence condition” and may be
formulated simply, for a nonhomogeneous dielectric medium, by
saying that the ratio of the per-umit-length conductor-to-ground
capacitances must be the same in the empty and in the filled struc-
ture. The essential interest of congruence lies in the drastic simpli-
fication it introduces in the expressions of the eigenvalues and of
the mode velocities and in the expressions of the mode admittances
and impedances for the two coupled lines. Because of this simpli-
fication, a straightforward matrix derivation may be written to obtain
closed-form expressions of the entries of the 4 X 4 Y-, Z-, and S-
parameter matrices of the coupled-line 4-port. The simplicity of the
definition of the fundamental modes in congruent structures in-
troduces great conceptual clarity in the description of coupled-wave
propagation. Experimental evidence is presented which proves the
physical existence of the even-mode wave and of the redefined odd-
mode wave in suspended-substrate broadside-coupled striplines.
Practical structures of this type are very closely congruent.

I. INTRODUCTION

HE propagation of sinusoidal waves on parallel coupled
A lines has been described in various ways by different
authors at different times.

Historically, the even- and odd-mode method was first
applied to the case of symmetrical lines in a homogeneous
medium [ 17]. The same method was later extended to the
case of symmetrical lines in a nonhomogeneous medium
[27] and the case of nonsymmetrical lines in a homogeneous
medium [37, [4]. In this latter cdse a rather confusing
alternative was given in the definition of the modes, de-
pending on whether the line voltages or the line currents
were considered [57]. Both these definitions appear valid
in the case of a homogeneous medium while it can be
shown that neither of the two applies to the general case
of nonsymmetrical lines in a nonhomogeneous medium [6].

Attempts have been made to treat this general case in
terms of so-called coupled modes [77], [8]. However, by
far the most concise formulation of the problem was given
in terms of a matrix analysis of the fundamental or un-
coupled modes [97]-[117]. This method is very general
and applies to the case of multiconductor transmission
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lines with any number of conductors all mutually coupled.
It is the purpose of this paper to show that a very interest-

.ing and simple condition exists in the case of two non-

symmetrical parallel coupled lines in a nonhomogeneous
medium which reduces the fundamental modes to a voltage
even mode and a current odd mode. Because of this re-
duction, great simplification is introduced in the expres-
sions of the mode velocities and of the mode admittances
and impedances for the two lines.

This simplification makes the derivation of the 4 X 4 Y-,
Z-, and S-matrices feasible in closed form. Also the con-
dition, which we call “congruence,” introduces great con-
ceptual clarity in the normal mode description of wave
propagation.

HExperimental confirmation has been obtained of the
physical existence of the reduced fundarnental modes.
This work is described in the last section of this paper.

1. THE FUNDAMENTAL MODES OF
GENERALIZED COUPLED LINES

Multiconductor coupled transmission lines, including
those with a nonhomogeneous medium, are characterized
by their symmetric inductance matrix | L | and their sym-
metric capacitance matrix | C|. The order n of these
matrices is given by the number of conductors in the
system, and their entries L,;C,; are the per-unit-length
self- or mutual inductances and capacitances of the
various conductors.

Sinusoidal waves propagating on the lines may be de-
scribed by a voltage vector | V | and a current vector | 7 |
both of order n. These vectors may be expressed as linear
combinations of n voltage eigenvectors - V |, and, re-
spectively, n current eigenvectors | I [; defined by the
two simultaneous matrix equations [11] (¢ = 1,2+++,n)

[ V]e=wv-|L]|-|T (1)
[Ili=wv;-|C|- |V (2)

where the mode velocity v; and the voltage and current
eigenvectors | V |; and | I|; characterize a fundamental
or uncoupled mode of propagation.

By eliminating either the eigenvector | [ [; from (1)
or the eigenvector | V |; from (2), two eigenvalue equa-
tions for | V |; and, respectively, | I |;, are obtained

| Lc | -

1
V[z=v_2|V]i (3)
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1

[CL]-II|i=v—2|Ili (4)

where | LC | = |L| - [C|and |CL| = |C| - | L |arethe
direct and inverse matrix products of matrices | L | and
1C].

In the case of a pair of lossless nonsymmetrical parallel
coupled lines, including the case of a nonhomogeneous
medium, these matrices may be written as

Li L, L, M
|L| = = (5)
L, L M L
Cl “"Cm Ca + Cab __Cab
[C] = = (6)
—Cm 02 "'Cg,b Cb + Cab
and their products assume the form
A B
[LC| = (7)
C D
A O]
[CL|=[LC|* = (8)
B D
where
A = LlCl - mCm (9)
B = —LiCp + L.C: (10)
C = LmCI — Lsz (11)
D = LZCz - LmCm- (12)

By substituting the products (7) and (8) in the eigenvalue
equations (3) and (4) and expressing the eigenvectors
| Vi and | I|; in normalized form, we obtain the matrix
equations

A B 1 1 1
. Vo= = v, 1=12 (3)
02
C D a; * 27
A C 1 1 1
. . I = - I’ 'L' = 1,2 (4,)
vz
B D B: * |8

which may be solved for the voltage and current mode
numbers a; and 8;

ai2+A;Dai—%=O (13)
m=—AéDi%ﬂM~Dﬁ+w@W (13")
se+ 2o~ T =0 (14)
&=—A£D1%UA—MH4MW2GM
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and for the eigenvalues 1/v;2 by solving the characteristic
equation of | LC | or | CL |* [12]

(914A+D”§+mp—30=0 (1)

) T

we then obtain the two values

1 A4D

‘052 2

=+ (A — D)2+ 4BC]2 (15%)
which define the velocities of the fundamental modes. 1t
is easy to express the mode impedances and admittances
as functions of the per-unit-length inductances and ca-
pacitances, of the mode velocities and of the mode numbers
a; and B;. To do this we just rewrite (1) and (2) by sub-
stituting (5) and (6) and expressing the eigenvectors in
normalized form (¢ = 1,2)

1 Ly L, 1
V =u I (1)
1 C; —Cu 1
I = Vs 14 (2,)
Bl '—Cm 02 (62
or explicitly (¢ = 1,2)
V = vi(L1y + BiLm) I (16)
a;V = 0;(Ly + B:le)l (17)
I =9,(Cy - aCn)V (18)

Bl = v,(—Ch + a.C2) V. (19)

As a consequence, the mode impedances and admittances
of the two lines a and b for mode ¢ are (z = 1,2)

vV
Zo® = 7= v:(Ly + Bilm) (16%)
zV Lm
Ziot = {C;J = U; (Lz + E:) (17/)
I
Yo = T_f = 9;(Cy ~ a;Cn) (18"
iI m
Yot = % =V (Cz - g“) (19")

Thus we obtain four impedances and four admittances,
one for each mode and each line. Notice that .

Yoo _ _ _C
Yo  Zo® B: B

1= 1,2.

It is clear that in the general case the mode numbers «;
and B;, the mode velocities v;, and the mode impedances
and admittances are all quite complex irrational functions

t The coefficients of this equation are —Tr | LC | and Det | LC |.
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of the per-unit-length inductances L,, Ly, M, and capaci-
tances C,, Cy, Cop. However, «;, 8., and v, can be proved to
be always real. As a consequence, the mode impedances
and admittances will be real too, for lossless lines.

The mode numbers «; and B; may have either positive
or negative sign and may have the same or opposite signs.
The mode velocities v; obtained from (15’) always come
in pairs of opposite roots, relating to the two directions of
possible mode propagation on the two coupled lines.

III. THE CONGRUENCE CONDITION AND
ITS CONSEQUENCES

It is easy to see that great simplification is introduced
in the expressions of the mode numbers (13”), (14'), the

eigenvalues (15’), and mode impedances and admittances
(16")-(19) if, in (7) and (8)
A+B=C+D (20)
or
A—D=C-B (20')

In this case, which we call congruence, the mode numbers
a; and §; reduce to

_ C—B
2B

=41 ~-C/B) = (1+C/B)]

1 for <=1 (4 sign)

1
—_— —_ 2 1/2
:I:2B f(C — B)2+ 4BC(C]

—C/B for =1

C—B 1
i — 2 4 1/2
50 :1:20[(0 B)? + 4B(]

=3[ B/C—1) £ (B/C+ 1]
B/C for <=1 (+ sign)

2 (— sign) (13

Bi = —

—1 for ¢ =2 (- sign). (14"

In conclusion, in this case the matrices of the normalized
voltage and current eigenvectors reduce to

1 1
My = (21)
1 —-C/B
1 1
My = (22)
B/C -1

From the first column of My we see that the mode ¢ = 1
is a voltage even mode having equal voltages on the two
lines. From the second cotumn of M7 we see that the mode
i = 2is a current odd mode having currents of equal mag-
nitude and opposite sign on the two lines.

It is then justified to call these modes the even mode
and the redefined odd mode of the congruent coupled
lines. A physical interpretation of the condition (20) may
be obtained by substituting the expressions (9)-(12) of
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A, B, C,and D

LlCl - LmCm - Llcm + LmCZ
= L,C, — LCp + LyCo — L,C,,  (23)

Ll(Cl - m) + Lm(CZ - m)
= Lz(Cz - Cm) + Lm(Cl - Cm) (23,)
01 - Cm L2 - Lm 173
C;—Cn ILi— La (25
Ca _ Lb - M 1
Lo (28)

We see from (23"”’) that a pair of coupled lines may, while
being congruent, be nonsymmetrical (C, = Cs, Lo # L)
and the medium may be nonhomogeneous causing the
mode velocities »; = v, for the even mode and v, = v, for
the redefined odd mode to be different.

In particular, if the medium is just a nonhomogeneous
dielectric with g, = 1, then the parameters s, s, and M
will have the same values in the given structure and in the
so-called empty structure, which is obtained by removing
the dielectric while leaving in place the conductors.

In this connection it is interesting to notice that the
congruence condition (20) is intrinsically satisfied in the
empty structure where

v = 1, = ¢ = velocity of light in air (or vacuum).

Indeed, in this case the product matrices | LC | and | CL |
are diagonal matrices with

B=C=0 (24)
and
A=D-=1/c (25)

This means that the condition (23’), equivalent to (20),
will always be satisfied by the per-unit-length line-to-
ground capacitances Cu4,Crq of the empty structure and

by its per-unit-length inductance parameters L., Ls,

and M.

In conclusion, if a pair of nonsymmetrical coupled lines
with nonhomogeneous dielectric is congruent and we call
C.p,Cep its per-unit-length line-to-ground capacitances
(with the dielectric in place), we have

o _ G _Tn =0 o0

8o the congruence condition may be expressed by saying
that the introduction of the nonhomogeneous dielectric
in the empty structure must not affect the value of the
ratio of the per-unit-length line-to-ground capacitances.

The effect of the nonhomogeneous dielectric may be
described by introducing the three equivalent dielectric

constants ;, e, and e, defined by
CaD = GaCyaA (27)

CbD = ebCYbA (28) .
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Cap = enCaa. (29)

Then congruence is obtained if e, = .

It can be proved that for a nonhomogeneous medium
having at the same time dielectric and magnetic proper-
ties, the latter being described by the three equivalent
relative permeabilities s, ws, and w., congruence is ob-
tained if

CabA

Capa
Ha€a — Mp€Ep = (ﬂm - ﬂa) €
CbA

= (pm — ub)eba-

(30)
For a pair of congruent, nonsymmetrical coupled lines

with nonhomogeneous medium, the only nonunity mode
numbers are

C

y = — — 31

w=—7 (31)

and

Qi

Br=B. = (32)

Under conditions of congruence the basie expression

C  LnCi— LiCn

B L.C, — LiCn (33)

also becomes greatly simplified and acquires a relevant
physical meaning. This may be seen by rewriting (23’) as
Li(Cy — Cp) — Ls(Cy — C) = Lin(Cy — Cr)

1 — Lu(Cy — Cw).  (23"")

By multiplying both sides by C,, and adding L,.C:C,, this
may be rearranged in the form

(LmCI - LZCm) (02 - m) = (LmCZ - LICm) (Cl _ Cm)-

(23["//)
So that in conclusion
g _ LmCI e L2Cm _ Cl - Cm _ _C_a (33,)
B L.Ci—IC. Co—Cn Cy

We see then that in the case of congruent lines the even-
mode currents are simply in the same mutual ratio as the
per-unit-length line-to-ground capacitances. Also the odd~
mode voltage magnitudes are in the reciprocal ratio of
these eapacitances

(31")

G

. (32"

Be
The congruence condition (20) also introduces great sim-
plification in the expressions of the eigenvalues as given
by (15”). Indeed these expressions reduce to
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,713=A;—Di%[(0+3)2]1’2=%[(A+D):I:(C’+B)]
If(A+B) +(C+D)]=A4+B=C+D
for ¢=1

f{A4-C)+D-B)]l=4—-C=D-B
for 7=2. (15")

As a consequence, very simple expressions of the mode
velocities may be written as functions of the line param-
eters

1 1
WS+ BT O+ Dy
_ 1
" [Ly(Cy — Cn) + Ln(Cs — Cm) 2
- 1 "
T [La(Cs — Cn) + La(Cy — Co) 2 (34)
— oy — 1 _ 1
Vg = V.= (4 — O) - (D — B)
_ 1
[(It — Luw)Cy + (L — L) Cu 2
1
(35)

T [(@o — Lm)Ce + (Ly — L) Co H2°

Finally, from the expressions (16”)—(19’) we obtain, by
substituting the appropriate values of the mode numbers
a; and B;, the following expressions of the even- and odd-
mode impedances and admittances:

ZOea = Ve (Ll + %Lm) (36)
, Ca
Zod = 0, (Lz T Lm) @37)
Cy
ZOoa - vo(Ll - Lm) (38)
ZOob = vo(L2 - m) (39)
Yo = 0,(Ci — C) = 0.Ca (40)
Yol = 03(02 - Cm) = 9,0 (41)
C.
. YOoa = ¥V (Cl + - Cm) (42)
Cs
Cy
YOob = ¥, (02 + F Cm) . (43)

' By substituting Cl = Ca -+ Cab, Cz = Cb -+ Cab, and Cm =
Cp in (42) and (43) and taking the reciprocals, the odd-
mode impedances may be cast in a more familiar form
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[5, p. 193]
C,
Zos = '
0 25(CoCh 4 Coilas + CiCus) (389
Zoob _ Ca ’ (39/)

T 0,(CaCh + Colos + CoCs)

It is clear from all the expressions found for the congruent
case that the ratio C,/Cs of the per-unit-length line-to-
ground capacitances plays a very important role here.
Historically [6], the symbol R; was used to specify this
ratio as follows:

Cab . C_a,b Ca

Ry = -2 = e
L= R, A Rs A

Cab

B, = Co

Among these ratios only R; and R, actually play roles of
interest in the relevant expressions of the congruent
coupled lines.

The even and odd modes of congruent lines have been
proven to satisfy the coupled-mode equations [13].

IV. THE DERIVATION OF THE Y-, Z-,
AND S-MATRICES

In the coupled-line 4-port of Fig. 1 where line a con-
nects ports 1 and 2 and line b connects ports 3 and 4, we
consider the contiguous ports 1 and 3 input ports, and the
contiguous ports 2 and 4 output ports.

In the context of the new mode definition we can write
the four port currents Iy, I», I3, and I, and the four port
voltages V1, Vs, Vs, and V. as follows:

Li=I.+ 1L, (44)
L =L+ I (45)
Ii=1I — I, (46)
Li=1I,— L, (47)
Vi=Vi+ Vi, (48)
Vo= Vet Vao (49)
Vi=Vie+ Vi, (50)

Fig. 1. Typical nonsymmetrical asynchronous coupled-line 4-port.
Nonhomogeneous dieleetric propagation medium is assumed. The
cross-section geometry of the test fixture for wave-mode propaga-
tion experiments is shown in the insert.
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V4 = VZe + Vflo- (51>

In (44)-(47) the even-mode current components are
then mutually related by the simple proportion

(52)

Similarly, (48)-(51) the odd-mode voltage components
are mutually related by the proportion
Vie Vi Cy 1
LA N - 53
V3o V4o Ca ( )
As a consequence the eight expressions (44)-(51) can be
rewritten as

Il = Ile + Ilo (44’)

Iz = IZe + I2a (45')
Iy,

h=ﬁ—m - (46")
L,

I, = R—: — I (47"

Vl = Vle + Vlo (48’)

V2 = V2e —I" V2o (49’) N

Vs = Vie — RV, (50')

Va= Vse — R3V3. (51")

In these equations the even-mode current and voltage
components at the input and output ports are mutually
related by the two 2-port even-mode Y-matrices | Yiz® |
and | Y? |, which are different, because of line inequality

Ile ' Vle
=|Yg| - (54)
IZe Vze
[le
_— V, N
Rs '
=1Yg|- (55)
I2e
- V .
R: ?

Similarly, the odd-mode voltage and current components
at the input and output ports are mutually related by the
two different 2-port odd-mode Z-matrices | Zo* ! and
| Zo® |

Vla I, lo

=|20*| - (56)

VZa Izo
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_R3V10 - Ilo

= |20 - (57)

*R3V2o - I2o

However, by performing an operation of matrix inversion,
which implies a network-parameter transformation from
Z to Y, these relations can be rewritten in the form

I, Vi
=|Zo* |- (58)
I, Vo
-1 —RsV1,
=1Zo" [ - (59)
—1I, — RV

In (54) and (55) the even-mode 2-port Y-matrices for
lines @ and b are given by

T T
tan 6, sin 6,
| Yee | = “, z=ab (60)
._Yo_em o Yoo
gin 0, tan 6,

At the same time, the two odd-mode 2-port Z-matrices
of (58) and (59) are given by

. Zo” . Zo”
7 tan 0o " sin 6o
| Zo? | = , z = ab. (61)
. 2t . Zoo®
i b0 " fan 0,

In the given expressions (60) and (61) 6. and 6, are the
line electrical lengths for, respectively, the even and odd
mode as defined by

2, _w

0, = B = ) (62)
€ Ve
2

0, =Bl = —1 =27 (63)
Ao Vo

while the even-mode admittances Vo2, Y.? and the odd-
mode impedances Zo,%Z,* are defined by (40), (41),
(38’), and (39’).

By solving (48’) and (50') for Vi, and Vi, then, simi-
Jarly, (49’) and (51’) for Va, and V,,, we have

R3 Vl + V3

Vi =
. 14 R,

= Vs, (64)
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_ Vi—Vs Vs,

Vlo - 1 +/R3 - R3 (65)

- R3V2 + V4

Vie = T+ Rm Ve (66)

_ Ve=Ve Va

Vie = = . 67
=TT R - R (67)

Therefore, by substituting these four voltage components
in the right-hand vectors of (54), (55), (58), and (59),
the current components Iy, I, Is, and Is, can be com-
puted.

These current components can then be substituted in
(447)—-(47") yielding the expressions of the four port cur-
rents I, I», I3, and I, as linear combinations of the four
port voltages Vi, Vs, Vs, and Ve

The 16 coefficients of these four expressions then repre-
sent the 16 entries of the 4 X 4 Y-matrix of the nonsym-
metrical and asynchronous coupled-line 4-port. They
respect the mutual identities dictated by end-to-end sym-
metry and by reciprocity between any two distinet ports,
regardless of the specific values of the even-mode and odd-
mode wave velocities v, and v,.

Six different entries need to be given to fully specify
the 4 X 4 Y-matrix, and these are

Yo=TYu=—7 4{ Rs (tzfzg* Zost :,an eo) (68)
Yoo = Yu = =7 —i R (tif; + zo,,»fin o,,) (69)
Y= Yu=yq +y R, (1;011 233 t Zor ;n o,,) (70)
Ya = Yu =7 +' R; (sf:f; + z,,fZ?n o,,) ()

Y13 = Y31 = Y24 = Y42 = -

L s~ )
14 R; \tan 6, Zy* tan 6,

_ ]R3 ( YOe 1 )
1+ Rs \tan 6,  Zy® tan 6,

(72)

Y14 = Y41 = Y23 = Ysz =

] < YOe o 1 >
14+ Ry \sinf, Zysiné,

_ IR ( Yol 1 )
14 Rs\sinb, Zotsin g,/

(73)

In a similar way, (54) and (55) could be rewritten
through matrix inversion as
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Vle Ile
= | Yz® I'_l . (74)

V‘ze IZe

I le

Vie —

' Rs
SRCIRE (75)

I2e

Voe —

2 R

and directly combined with (56) and (57) to obtain the
expression of the 4 X 4 Z-matrix of the nonsymmetrical
and asynchronous coupled-line 4-port. The six different
entries of the Z-matrix are given by

. 7 Ra, Z()oa )
Ty = T = —
e am 1+ Rs (Yo,,“ tan 6, T fan 9, (76)
R3Z00 )
Zss = 7
® 1 + Rs (YOJ' tano, T tan o, (77
R Zy?
T = Zy =
» T + R (Y 2 sin 6, sm ] ) (78)
RSZOo
= Z1a = 7
Za BT + R; (YOe sin 0,, sin 4, ) (79)
]Ra 1 ZoO" )
Zn=Zn=2Zu=2s 1+ Rs (Ywa tan 6, tan®,
_ 7 ( ]. _ Zocb )
14 Ry \Yosbtan6, tané,
(80)
]Ra 1 . Zoo® )
= Ty = Ty = - -
Zu=Zin=Tn =2 1+ R (Y(,ea sinf, sin @,
_ J ( 1 _ Z()ab>
1+ R; \Yo2sing, sing,/’
(81)

It is very easy to verify that the expressions (68)-(73)
given for the entries of the Y-matrix and the expressions
(76)—(81) given for the entries of the Z-matrix reduce
to the corresponding expressions given for a homogeneous
medium [3], [4] for 6, = 6, = 6. Also they will reduce
to the corresponding expressions of symmetrical lines for

= 1[1], [2].

Further the expressions (76)-(81) defining the 4 X 4
Z-maitrix have been successfully tested against the values
computed by numerically inverting the Y-matrix as de-
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fined by the expressions (68)—(73). This proves that the
two matrices represent the same 4-port.

Finally, the closed-form expressions of the S-parameters
of the nonsymmetrical, asynchronous 4-port can be de-
rived by directly relating the four port voltages and the
four port currents to the internal even- and odd-mode
waves propagating along the two lines.

We assume here the wave propagation upon a pair of
nonsymmetrical and asynchronous coupled liries a and b
to be represented by a total of four internal waves, each
wave having voltage and current components on either
line. ,

Referring to line a these waves are:

1) The even-mode incident (forward) wave Vi, which
is assumed to propagate from port 1 toward port 2;

2) The odd-mode incideént (forward) wave V., also
propagating from port 1 to port 2;

3) The even-mode reflected (backward) wave Vi
which is assumed to propagate from port 2 toward port 1;

4) The odd-mode reflected (backward) wave V., also
propagating from port 2 to port 1 on line a.

The corresponding voltage waves on line b are Vg,
Vivoy Vite, and Vog,. The incident (forward) waves are as-
sumed to propagate from port 3 to port 4 and the reflected
waves (backward waves) from port 4 to port 3.

The electrical length of the lines is assumed to be the
same and expressed by 8, for the even-mode waves and by
6, for the odd-mode waves.

By assuming port 2 at the end of line a as the origin
of a reference coordinate system with the positive semiaxis
pointing toward port 1 and also as the reference point for
the phases of all considered waves we can write the four
port voltages V1, V,, V3, Vi as local additions of four voltage-
wave terms

Vl = Viae exp (]09) + Viao exp (.700) + Vnw

< exp (—js) + Vraoexp (—j) (82)

Vo= Viee + Vieo+ Viae + Viao (83)
Vs = Vieeexp (jbe) —RsViaoexp (7o) + Viao

» exp (—jb.) — RsV,aoexp (—j6,) (84)

Vi= Viee — BsViso + Viee — B3Vio. (85)

Let us now consider the current waves asisociated with
the already introduced voltage waves.

The even-mode currents can be expressed by multi-
plying the even-mode voltages by the appropriate even-
mode line admittances ¥o.2 or Yol. Similarly, the odd-mode
currents can be expressed by dividing the odd-mode volt-
ages by the appropriate odd-mode line impedance Zo,*
or Zoo’.

The four port currents I1,l5,13,14 may be expressed as
local additions of four current-wave terms. But by ex-
pressing the wave currents in terms of wave voltages we
obtain
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Il = YOe V@ae exp (]0 ) Vrae
. Vrao .
* exp (—jb) — = exp (—jbo) (86)
0o
Viao Vrao
Iz = YoeaViae - Z + YOe V’rae + (87)
00
. V'L'ao .
I3 = YOebViae exp (]Be) - R3 Z—b exp (]00) - YOemee
0o
V
- exp (—j8.) + Rs eXp (—76.) (88)
5 Vo Viao
I4 = _YOebViae + R3 ZOab + YOe rae R3 Z 5 (89)

Caution must be exercised in the choice of the 16 signs
of the various current-wave terms. The rule, which follows
from current-sign conventions, is that incident-wave cur-
rents are positive at ports 1 and 3, negative at ports 2
and 4. Conversely, reflected-wave currents are negative
at ports 1 and 3 and positive at ports 2 and 4.

This rule is true if the corresponding wave voltage is
positive, which is not the case for the odd-mode voltages
of line b. Here we-have sign reversal because the corre-
sponding voltage is negative.

The two sets of equations (82)-(85) and (86)—(89)
may both be solved for the four voltage waves Vise, Viao,
Vyae, and Voo 80 that each wave is expressed once as a
function of the port voltages and once as a function of the
port currents. At this point boundary conditions can be
set specifying the values of the external impedances at
the four ports and the position of one voltage source. For
instance, by assuming a generator with EMF, E; and in-
ternal impedance Z, to be connected at port 1 and loads
of impedance Z, to be connected at the remaining ports
2, 3, and 4, we have

I = 21[—) (B, —Vy) (90)
L— = 2 (91)
I; = Zz (92)
I - ‘;z (93)

By substituting these expressions of the port currents
in the expressions of the wave voltages as functions of
the saime currents as obtained from (86)—(89), new ex-
pressions of these wave voltages are obtained which re-
sult again in being functions of the four port voltages.
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By equating this new set of four expressions to the corre-
sponding solutions obtained from the set (82)—(85), the
wave voltages can be eliminated and the four port voltages
V1, Ve, Vs, and V; can be directly expressed as functions
of the system parameters and of the EMF, E;. These
operations actually provide the voltage transfer functions
relating the four port voltages to the source EMF, E,.
These four transfer functions are directly related to the
entries Si, Sy, S, and S of the first row of 4 X 4 S-
parameter matrix, which are all different from one another.
By moving the generator from port 1 to port 3 the four
entries of the third row of the 4 X 4 S matrix can be ob-
tained. These will provide the two remaining entries Sss
and Ss: necessary to completely specify the 4 X 4 S-matrix
and in addition confirm the equality of Ss to Siz and Ss
to Su, as required by reciprocity. It is of course possible
to move the generator to ports 2 and 4 but this would
vield the entries of the second and, respectively, the
fourth row of the S-parameter matrix which, because of
the peculiar matrix structure, would provide no addi-
tional new information. )

The six different entries defining the 4 X 4 S-parameter
matrix obtained through the outlined procedure are given
by

Nz + jNu

S = S = D -t 7D: (94)
&i&=%§%% (95)
Syt = Sip = ]H (97)
Sis = Sss = Sas = Sip = %gj’ (98)
Su=8n=8n=8p= AH%’ (99)

where

Dp = 2[(1 — R3)? — (3 4+ 2R3 + 3Rs?) cos 8. cos 8,

R 1 ¥ 4R
[(1+R3)2(R320 +___l/o)+ 3
R3 200% y()e“zOoa
1+ R.2)2
( -;3 ?3—)— Yoe 200 ] sin 6, sin 6, (100)
3 .
2
D = — 2(1 -+ Ra) ”:(1 + R32)200“ -+ . a] sin 4, cos 6,
0o
[(1 + B o toc” 1] sin 6, cos ea} (101)
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Niz = 2(1 — R®) (1 — cos 6. cos 8,)
+ [(1 + Rs)z( N i%e“)

yOea R3 zOoa

1 — Rt
+ : yo.;‘zo,,“] sin 6, sin 6, (102)
Rs
1Y\ .
Niy = —2(1 + Ry) [(zo,,“ - —) sin 4, cos 6,
zOoa
1 .
— (yoe“ -~ ) R; sin 6, cos 00] (103)
y()ea
Nop = — 2(1 — Rg?) (1 — cos 6, cos 8,)
o 1 2
+ [(1 + Ry)? (Rszo = )
Yoo R 20.°
1 — Rst
- : yo,;‘z()f] sin 6, sin 6, (104)
R,
1Y\ .
Nor = — 2(1 4+ R3) [(R32z0,,“ - a) sin 4, cos 8,
0o
R__3_ yOea) . :|
+ (yog‘ e 8in 6, cos 6, (105)
Nz = — 4(1 4 R3) (cos 6, + Rscos 8,) (106)
No = — 2(1 + Ry) [( : +y°”)sino,,
Yo B3
1\ .
+ (R32z00“ + " a) sin 0.,] (107)
0o
Nz = —4(1 + Rs) (Rs cos 0. + cos 8,) (108)
1
N41 = e 2(1+R3) [(yog’—l— a) R3sinﬂe
(i
1Y ,
+ (200“ + ; u) sin 00] (109)
0o

Nsgp = 2(1 — R3)2(1 — cos 6. cos 6,)

2R . .
-2 [(1 + Rs?) yol20.* — : ] - sin 4, sin 6,
?/Oe“ZOo“
(110)
1Y\ .
Nsr = 2(1 + Rs) [(Raﬁm;“ - z a) sin 8, cos 6,
00
- ( L yog'> sin 6. cos 0,,] (111)
Yoo )
Neg = 2(1 4 Rs)2?(cos 6, — cos 8,) (112)
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R .
Nor = 2(1 + Ry) [(y—sa + yo.;‘> sin 6,
Oe

<)o
gsin 6,
z()oa

where yo.* and 2y, are the normalized parameters of line a.

The S-parameter matrix as defined by the previously
given closed-form expressions, has been tested against the
results of numerical computations of the same parameters
based on the general formula

IS ={UI+1yB U] -]y}

— (RaZoO" + (113)

(114)

where | U | represents the 4 X 4 identity matrix and | y |
is the normalized 4 X 4 Y-matrix obtained from the ex-
pressions (68)—(73) by multiplying all the entries by the
external impedance Z, [14]. Recently, more general ex-
pressions of the six entries of the 4 X 4 S-parameter
matrix have also been derived for a situation in which
the value of the termination Zy* at either end of line a
(ports 1 and 2) is different than the value of the termina-
tion Z¢® at either end of line b (ports 3 and 4) [157]. These
expressions led to the design of asynchronous codireetonal
couplers with large impedance ratios between the two
lines and almost total coupling, characterized by abso-
lutely linear phase rotation [167].

Also alternative closed-form expressions of the S-
parameters have been obtained by formally carrying out
the operations of matrix inversion and multiplication
specified by (114) [17].2 These alternative expressions
have also been tested numerically for correctness.

V. EXPERIMENTAL RESULTS

Two basic experiments were performed in our labora-
tory by using coupled-line test fixtures, such as the one
in Fig. 2, having parallel ground planes with 0.5-in spacing
and suspended eceramic substrate orthogonal to the ground
planes. The lines are broadside-coupled gold runs of un-
equal width, and the cross-section geometry is that shown
in Fig. 1. A 3-in and a 16-in structure were used.

In the first experiment [Fig. 3(a) and (b)] a voltage
even mode was launched down the lines by connecting
both input ports 1 and 3 (Fig. 1) in parallel. A 25-ps-rise-
time tunnel-diode step generator was used and 12-GHz
samplers were connected at the output ports 2 and 4. The
input even-mode step waveform was found 1o propagate
along both coupled lines at the same velocity, slightly
lower than the velocity of light in vacuum regardless of
line asymmetry (0.065-in and 0.0135-in strip widths were
used). The output step signals on the 50-Q output lines
appear unequal in magnitude because of the unequal re-
flections at the two output transitions

2 Credit is due to Dr. N. R. Franzen, of our department, for de-
veloping a method of formal matrix inversion applicable to 4 X 4
block matrices having the symmetry pattern of the given Y-, Z-,
and S-matrices.
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Flg 2. Test fixturé for even- and odd-mode wave propagation ex-
periments upon nonsymmetriesl asynchronous parallel coupled
lines. A 4-port launcher arrangement is shown on the 3-1n-long
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Fig. 3. Even-mode step-wa,ve propagation experiment. The two

equal 25-ps-rise-time input steps are seen to reappear synchro-

nously at the low-impedance and the high-impedance output ports
2 and 4. (a) Results from 3-in-long fixture. (b) Results from
16-in-long fixture. Ports 1 and 3 of lines @ and b are shorted to one
another. The dashed lines are theoretical step responses computed
from frequency-domaln S-parameter data through FFT.

In a second experiment [Fig. 4(a) and (b)], a push—
pull 25-ps-rise-time tunnel-diode step generator was con-
. nected to the input lines and adjusted for step synchronism
as'agn‘ attempt at launching an odd mode down the liries.
Obtaining a pure odd mode is difficult because of the un-
equal teflections at the two input transitions. However,
it ‘'was considered irrelevant because the different velocities
of the two modes separate them in time at the output.
The results obtained proved that the incident, push—pull
step excitation applied at the line inputs breaks down along
the line length into two nonsynchronous components con-

sisting of a faster voltage even miode having the polarity
of the signal at the wide-line input, and a much slower
current odd ‘mode, havmg the largest voltage across the
narrow line.

~ The values of the line parameters Yo.*, Yo?, Zo% and
Zy* may be computed from step-amplitude values ob-
tained in the two experiments and have been used, with
the experimental values of the even-mode and odd-mode
velocities to compute the theoretical transient responses
shown as dashed lines in Figs. 3 and 4. This computation
was performed by converting frequency-domain S-param-
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Fig. 4. Push-pull step-excitation experiment. The 25-ps-rise-time
input steps having opposite polarity are seen to break down to a
faster even-mode component having the polarity of the step at
the input of the low-impedance line [positive step on the low-
impedance line in Fig. 4(a) and (b)] and two slower odd-mode
components having unequal voltage magnitudes, the larger volt-
age appearing across the higher impedance line. (a) Results from
3-in-long fixture. (b) Results from 16-in-long fixture.
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Fig. 5. A nonsymmetrical pair of parallel-coupled lines: C, and
C, are line-to-ground capacitances per unit length, Cg is the
line~to-line capacitance per unit length which must be considered,
for the odd mode, as the series combination of the two unequal
capacitances Cg: and Cgpe (Copi/Cy = Copa/Ch).

eter values to the time domain through a fast Fourier
transform (FFT).

VI. CONCLUSION

In a large class of nonsymmetrical coupled lines with
nonhomogeneous propagation medium, a voltage even
mode and a current odd mode are found to be the funda-
mental uncoupled modes of the structure.

The two modes are characterized by hsving, respec-
tively, wave voltages of equal magnitude and phase, and
wave currents of equal magnitude and opposite phase.

This causes the even-mode currents on the two lines
to be in the mutual ratio of the per-unit-length line-to-
ground capacitances and the odd-mode voltages to be in
the inverse ratio of these capacitances.

The condition for the existence of these simple modes,
called congruence condition, is C,/C, = (I, — M)/
(Le — M).

This condition is satisfied by nonsymmeirical lines in
a homogeneous medium and implies, for a ronhomogene-
ous dielectric, that the ratio of the two line-to-ground
capacitances C, and C, is the same in the filled and in the
empty structure (see Fig. 5).

The existence of these new modes has been proved
experimentally in suspended-substrate broadside-coupled
striplines.
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Annotated Literature Survey of Microwave Ferrite Control
Components and Materials for 1968 -1974

LAWRENCE R. WHICKER, SENIOR MEMBER, IEEE, AND DONALD M. BOLLE, SENIOR MEMBER, IEEE
(Editors)

Abstract—An annotated literature survey covering major de-
velopment in the area of microwave ferrite control components and
material primarily for the 1968-1974 period is presented.

I-1. INTRODUCTION

S PART of the responsibility for monitoring the field

of microwave ferrite control components and ma-
terials the IEEE Microwave Theory and Techniques
Society Ferrite Technical Committee (MTT-13) and the
IEEE Magnetics Society’s Technical Committee on
High Frequency Materials have combined their resources
to conduct a survey of the most significant papers that
have appeared since the publication of the book by Lax
and Button [I-1-17] in 1962, the 1968 survey article by
Soohoo [I-1-2], and the 1969 book by Fay and Von Aulock
[1-1-3]). The time for a new survey appears particularly
appropriate in that this field has seen major advances in
ferrite components and in materials. The field has matured
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and has reached a high level of sophistication in component
optimization and in materials technology.

The emphasis in this article is on the ferrimagnetic
control component and systems utilization of such com-
ponents, although material aspects are considered also. A
companion survey paper [ I-1-4] has been published in the
May issue of the IEEE TraNsacTIONS ON MAGNETICS.
The article published therein has greater emphasis on
materials and includes a section by C. E. Patton on the
loss mechanisms in ferrimagnetic materials. A further
companion paper by Knerr [I-1-5] covers the English
language literature on circulators and isolators.

The survey was organized and pursued at joint mectings
of the two technical committees with members of these
committees accepting responsibility for the major topics.
The section on nonlinear ferrite devices and filters was
prepared by J. L. Allen, the sections on phase shifters
and integrated circuits were contributed by L. R. Whicker,
C. R. Boyd, Jr., R. Tang, and R. G. Roberts. P. de Santis
and D. M. Bolle collaborated on the section on the edge-
guided mode, and R. G. West and L. K. Wilson prepared
the section on characterization and material properties
of ferrites. The reviews of the foreign literatures were
conducted by J. Nicolas and A. Priou (Materials/Devices,



